Designing and Constructing CRISPR/Cas9 Soybean Precision Genomics Workshop 2014

Jean-Michel Michno Mich0391@umn.edu

Designing a CRISPR/Cas9 for your *Glycine max* gene of choice (Steps 1-3 credit Justin Anderson <u>ande9112@umn.edu</u>) **Note: All of our CRISPR/Cas9 information can be found at**: <u>http://stuparlab.cfans.umn.edu/protocols/crisprcas9-glycine-max/</u>

- 1) Find your gene
 - a) <u>Go to www.arabidopsis.org/</u>
 - b) Search your gene of interest in the top right corner i.e. RNA Polymerase
 - c) Click on a locus (AT#G#####)
 - d) Scroll down to the "Protein Data" section and click on the name (AT#G#####)
 - e) Scroll down to the "Sequence" section and copy the entire amino acid sequence of your gene (including the numbers is fine)
- 2) Use BLAST to find your gene's Soybean version
 - a) <u>Go to www.phytozome.net/</u>
 - b) Click on the large box with the list of species
 - c) Click on the little box next to *Glycine max*
 - d) Under "2. Choose a tool:" expand "BLAST search"
 - e) Select "proteome" instead of "genome: masked"
 - The bar under proteome should say BLASTP- protein query to protein db
 - f) Paste your amino acid sequence from part one into the Query sequence box (the numbers can be included and will not affect the BLAST)
 - g) Click "submit" to begin the BLASTp search
- 3) Pick a target gene from the BLAST results
 - a) Browse the list of BLAST results for a corresponding gene
 - b) Click the box "Gene Page" to open the details about this gene
 - c) Confirm the description, domain, or annotations fit your original interests
 - d) Open the "Sequences" tab near the top
 - e) Expand "Genomic sequence" to view the genomic context
 - f) The color key is in the upper right, Blue indicates CDS
 - g) Copy the entire genomic sequence
- 4) Use your Glyma to find CRISPR/Cas9 target sites
 - a) Go to http://cfans-pmorrell.oit.umn.edu/CRISPR/
 - b) Enter your Glyma number (v1.1 or v2.1a of the genome assembly) or sequence into the text box and click submit
 - c) Once submitted scroll down to find your designed CRISPR target region (this site is designed to target GN19NGG recognition sites only)
 - d) Pick a target site with a unique five to six base pair restriction enzyme that cuts between 15-19 bp for forward CRISPRS and 4-8bp for reverse compliment CRISPR sites

- e) If you are going to use Stupar Lab destination vectors order the displayed target oligos from your favorite site
- 5) Order you plasmids from Addgene.org (skip if you already order them)
 - a) Go to http://www.addgene.org/CRISPR/
 - b) In the right side of the page there will be an orange box with the title "CRISPR Depositing Labs" click the Robert Stupar link
 - c) You will find a list of plasmids available, you MUST select the pBlu gRNA and one or more of the destination vectors

			Non-bacterial			Digestion
Name	Backbone	Promoter	selection	Bacterial Selection	DoubleNLS	Enzyme
	pBluescript					
pBlu gRNA	KS(+)	U6	NA	Ampicillin	NA	Bbsl
Cas9 MDC32	PMDC32	2x35S	Hygromycin	Kanamycin	no	EcoRI
Cas9 MDC123	PMDC123	2x35S	Bar cassette	Kanamycin	no	EcoRI
G10 Cas9						
MDC123	PMDC123	G10	Bar cassette	Kanamycin	yes	EcoRI
gXL Cas9						
MDC123	PMDC123	GmUbi XL	Bar cassette	Kanamycin	no	EcoRI

- d) Order selected plasmids and proceed to assembly
- 6) Assembly Round 1

a) Dilute your target oligos and anneal at 50C for 6 hours

Annealing target oligos	Concentration	amount		
Forward target oligo	100ng/ul	10ul		
Revese target oligo	100ng/ul	10ul		
PCR buffer	10X	2.2ul		
Total		22.2ul		
Anneal at 50C for 6 hours				

b) Digest pBlu gRNA with Bbsi (New England Biolabs # R0539S)

Digestion with BbsI	amount			
water	7ul			
NEB cutsmart buffer	2ul			
vector (1 microgram)	10ul			
Bbsl (5,000 units/ml)	1ul			
Total	20ul			
Digest at 37C for 5 hrs then heat				
inactivate for 15 minutes				

c) Run the product from step 6b on a gel and extract 3500 base pair band

d) Ligation of target oligos and BbsI cut pBlu/gRNA (NEB #M0202S)

Ligation of target oligos and Bbsi cut pBlu gRNA				
Vector	2ul			
Target oligos	2ul			
T4 ligase buffer	2ul			
T4 ligase	1ul			
H20	up to 20ul			
Total	20ul			
Ligate overnight at 16C				

e) Clone into Dh5 alpha (Life technologies #18258-012)

- i) Add 5ul of ligation to comp cells on ice
- ii) Heat shock at 42C for 30 seconds
- iii) Place cells immediately back on ice
- iv) Add 250 ul LB broth
- v) Grow cells for 30min-1hr at 37C
- vi) Plate 40-80 ul on LB agar with Ampicilli 100mg/L resistance grow overnight
- vii) Pick three colonies into 15ml tubes and grow in 3ml LB Amp 100mg/L overnight
- f) Miniprep and Sequence
 - i) Extract DNA from ecoli using a miniprep kit (Qiagen # 27104)
 - ii) Sequence DNA using T3 primer: aattaaccctcactaaaggg
- 7) Assembly Round 2
 - a) Digest sequenced pBlu/gRNA/insert and destination vector of choice using EcoRI (NEB # R0101S)

Digestion with EcoRI	pBlu/gRNA/insert	Destination Vector		
Water	7ul	7ul		
NEB cutsmart buffer	2ul	2ul		
Vector/insert	10ul	10ul		
EcoRI	1ul	1ul		
Total	20ul	20ul		
Digest at 37C for 5 hrs then heat inactivate for 15 minutes				

- b) CIP treat destination vector (NEB # M0289S)
 - i) Add 2.5 ul of Antarctic Phosphatase Reaction Buffer directly to the ligation
 - ii) Add 1 ul of Antarctic Phosphatase
 - iii) Incubate at 37C for 1 hour
 - iv) Incubate at 70C for 5 minutes
- c) Run EcoRI cut pBlu/gRNA/insert on a gel

	ript KS (+)_gı	lide RNA.st							
Size	site1	0004	site2	00.47	Mass %				
2958	EcoRI	2804	EcoRI	2247	84				
557	EcoRI	2247	EcoRI	2804	16				
							_		
								557	
						- 2247 EcoRI		551	
						- 2804 EcoRi			
						-2004 ECONI			

- d) Cut out 557 bp band using gel extraction kit (Qiagen # 28704)
- e) Ligation of gRNA insert and CIP treated destination vector

Ligation of gRNA and Destination vector				
Destination vector	1ul			
gRNA fragment (EcoRI cut)	4ul			
T4 ligase buffer	2ul			
T4 ligase	1ul			
H20	up to 20ul			
Total	20ul			
Ligate overnight at 16C				

- f) Clone ligation into Dh5 alpha with Colony PCR
 - i) Add 5ul of ligation to competent cells on ice
 - ii) Heat shock at 42C for 30 seconds
 - iii) Place cells immediately back on ice
 - iv) Add 250 ul LB broth
 - v) Grow cells for 30min-1hr at 37C
 - vi) Plate entire solution on LB agar with Kanamycin100mg/L resistance grow overnight
 - vii) Pick three colonies (MAKING SURE TO REPEAT PIPETTE INTO YOUR COLONY PCR BEFORE PUTTING YOUR PIPPETTE TIP INTO YOUR 15ml TUBE) and grow in 3ml LB Kanamycin 100mg/L overnight

100116/201011611			
Colony PCR			
Qiagen HS+ MM	10ul		
primers F+R (10um)	3ul		
water	7ul		
one colony	repeat pipette		
Step1: 95C for 5 min			
Step 2: 95C for 45 seconds			
Step 3: 52C for 45 Seconds			
Step 4: 72C for 1 minute			
Step 5: go back to step 2 for 30 cycles			
Step 6: 72C for 5 min			

- g) Run colony PCR product on a gel to screen for present absent 550bp gRNA band
- h) Miniprep gRNA positive 15 ml tubes

You have now completed CRISPR/Cas9 the next step is to either transform the vector yourself or send it the facility of your choice.